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Abstract. Despite the great progress in temporal action proposal gen-
eration, most state-of-the-art methods ignore the impact of action scales
and the performance of short actions is still far from satisfaction. In
this paper, we first analyze the sample imbalance issue in action pro-
posal generation, and correspondingly devise a novel scale-invariant loss
function to alleviate the insufficient learning of short actions. To fur-
ther achieve proposal generation task, we adopt the pipeline of bound-
ary evaluation and proposal completeness regression, and propose the
Temporal Scale Invariant network. To better leverage the tempo-
ral context, boundary evaluation module generates action boundaries
with high-precision-assured global branch and high-recall-assured local
branch. Simultaneously, the proposal evaluation module is supervised
with introduced scale-invariant loss, predicting accurate proposal com-
pleteness for different scales of actions. Comprehensive experiments are
conducted on ActivityNet-1.3 and THUMOS14 benchmarks, where TSI
achieves state-of-the-art performance. Especially, AUC performance of
short actions is boosted from 36.53% to 39.63% compared with baseline.

1 Introduction

As an important and fundamental video understanding task, temporal action
detection has attracted extensive attention recently. Akin to object detection,
detecting action clips in a given untrimmed video can be divided into two stages:
temporal action proposal generation and proposal classification. For action pro-
posal generation task, the start and end time of real action instances in the video
need to be temporally localized. Action proposal generation is extremely useful
for many advanced video understanding tasks, such as action recognition, video
captioning, spatio-temporal action localization, and so forth.

Previous proposal generation methods can be mainly categorized as three
frameworks. The first one follows the top-down pathway. By utilizing sliding
window or anchor mechanism, a large number of default proposals are generated
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Fig. 1. What’s the impact of action’s temporal scale in proposal generation? For an
untrimmed video with two actions ϕ1 and ϕ2, current proposal confidence prediction
module would regress a promising score for long action ϕ2 yet miss the short action
ϕ1. This problem is caused by the imbalance of positive samples for different actions.

densely, which are designed to cover different duration ground truth. Then these
redundant proposals are revised by offset prediction and confidence regression,
such as [1–6]. The second framework takes bottom-up methodology, where the
temporal feature sequence is firstly used for boundary detection and actionness
evaluation, and the proposals are explicitly formed by pairing the start and end
points. Then, proposals are also refined by confidence regression, such as BSN [7]
and TSA [8]. In the third framework, to combine the advantage of both bottom-
up and top-down methods, boundary detection and dense confidence regression
are performed simultaneously by using ROI align. This complementary frame-
work obtains impressive results in BMN [9] and DBG [10].

Despite the remarkable progress achieved in action proposal generation, there
are still many issues remain unsolved. Among them, how to deal with the scale
change in temporal dimension is a long-standing problem. As shown in Fig. 1, in
an untrimmed video with two ground truth actions, the shorter action is prone to
be missed in completeness prediction, which is reflected as the extreme low recall
compared to long actions in Table 5. We delve deep into this phenomenon, and
conclude that the ignorance of short actions can be caused by the unbalanced
positive sample distribution. Another bottleneck that limits performance gains
is the module of boundary detection. Current methods mainly focus on local
information and low-level features, however the critical global context is missed
when determining the action boundaries. Local-global combination is an intuitive
and promising direction to widen this bottleneck.

To address the aforementioned issues, we first analyze the sample-imbalance
problem in action proposal generation, and correspondingly propose a gen-
eral scale-invariant loss function for confidence regression, which can evidently
enhance the detection ability for short actions. Furthermore, in order to achieve
complete action proposal generation, we combine the bottom-up and top-down
pathways, and introduce our Temporal Scale Invariant network (TSI).
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To be specific, TSI novelly adopts a multi-branch temporal boundary detector
to capture action boundaries with both high recall and high precision. Simul-
taneously, IoU map regressor, supervised by the proposed scale-invariant loss
function, is able to regress accurate confidence score especially for short actions.
The main contributions of this work are summarized as:

1. Centered on the temporal scale issue, we analyze the sample-imbalance phe-
nomena behind it, and accordingly devise a scale-invariant loss function to
improve the detection performance on short actions.

2. To achieve the complete action proposal generation, besides handling the scale
issue, TSI also takes advantage of temporal context for boundary detection
with local-global-complementary structure to enhance the performance.

3. Comprehensive experiments are conducted on THUMOS14 and ActivityNet
benchmarks. Results show that TSI outperforms other state-of-the-art action
proposal generation methods and achieves AUC of 68.35% on ActivityNet.

2 Related Work

Temporal action detection can be grouped into two types of methods: the first
type is “one-stage” method that intends to localize the actions and predict its
category simultaneously. The other type is “two-stage” method, which follows
the pipeline of “detection by classifying proposals”.

Temporal Action Detection. The advantage of one-stage method is to natu-
rally avoid sub-optimization for action localization and classification. For exam-
ple, akin to SSD in object detection, SSAD [3] defines multi-scale anchors and
uses temporal convolution to extract corresponding contextual features for off-
set regression and category prediction. What’s more, GTAN [11] uses Gaussian
kernels to model the temporal structure, which can dynamically optimize the
temporal scale of each proposal. Besides, P-GCN [12] and G-TAD [13] exploits
proposal-proposal relations and temporal-temporal relations by graph convolu-
tion networks and achieves significant performance gains.

Temporal Action Proposal Generation. The motivation of two-stage
method is the success of video classification task for a given trimmed video [14–
18]. Therefore, how to localize possible action instance with precise boundary and
high overlap in long untrimmed video becomes the key issue in action detection.
The mainstream of top-down action proposal generation methods would first
initiate a default proposal set, which is often predefined by clustering ground
truth actions, and then revise them with confidence regression [5,10,19–24]. For
example, RapNet [6] introduces a relation-aware module to exploit long-range
temporal relations and follows a two-stage adjustment scheme to refine the pro-
posal boundaries and measure their confidence. As for bottom-up methods [8],
TAG [2] designs temporal watershed algorithm to generate proposals, yet miss-
ing the regression for proposal confidence. Considering the boundary informa-
tion, BSN [7] firstly utilizes temporal evaluation module to predict the starting
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and ending probabilities, and uses proposal evaluation module to regress the
confidence score. To take advantage of both bottom-up and top-down method,
MGG [25] first attempts to embed position information and generate proposals
from different granularities. Improved from BSN, BMN [9] develops boundary
matching mechanism to regress the confidence of all potential proposals. To fur-
ther regress densely distributed proposals, DBG [10] propose an unified frame-
work to achieve boundary classification and action completeness regression.

Although the great progress in action detection, the long-standing problem
of temporal scale variation still has not been pertinently studied, which is the
main motivation of this paper.

3 Our Approach

3.1 Problem Definition and Video Representation

Given an untrimmed video X, the temporal proposal annotation is denoted as
Ψg = {ϕi = [ts,i, te,i]}Ng

i=1, where Ng is the number of ground truth, and [ts,i, te,i]
is the start and end time of action instance ϕi. The aim of temporal action pro-
posal generation is to predict candidate proposal set Ψp = {ϕi = [ts,i, te,i, si]}Np

i=1
to cover Ψg with high recall and high overlap, where si is the confidence score
of predicted ϕi and will be used for proposal ranking.

Following previous work [7,9,22,26], we adopt two-stream network [14] to
encode the raw RGB frames and optical flow of video X into representative
video feature sequence F0 ∈ R

C×T , where C is the fixed feature channel and T
is the video feature length. Then we rescale the feature sequence to length D by
linear interpolation and eventually obtain the feature F ∈ R

C×D, as the input
of action proposal generation network.

It is worth noticing that, in BMN, DBG and other methods, a proposal is
considered as the composition of a start point and an end point, which are
both selected from D quantified time index. Therefore, the upper limit number
of candidate proposals can be calculated as N =

(
D
2

)
= D(D−1)

2 , meaning the
algorithm need to retrieve real actions from these N candidates.

3.2 Scale-Imbalance Analysis in Proposal Generation

As introduced before, short actions are prone to be missed in confidence regres-
sion. By contrast, AUC can decrease significantly from 94.48% of long actions
to 36.53% of short actions in state-of-the-art baseline BMN (see Table 5). In
fact, the inferior detection ability of short actions can be interpreted as many
folds, such as the insufficient feature representation with limited granularity, the
stringent boundary overlap requirements due to the IoU evaluation metrics. In
addition to above reasons, the unbalanced training also leads to the over-
whelming learning of large actions but severe weak learning for short actions.

To discuss this issue, we need to clarify the definition of action scale first. The
scale of an action s is regarded as the ratio of action length to video length, thus,



534 S. Liu et al.

(a) set positive threshold = 0.9 (b) set rescale length D = 100
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Fig. 2. The distribution of positive sample numbers with action scale. Take D equals
to 100 in (a) for example, a long action with s = 0.85 will have 156 positive samples
while a short action with s = 0.25 has only 13 positive samples. This sample imbalance
causes severe weak learning for short actions but excessive learning for long actions.

s should belong to (0, 1). Now we inspect a video with two ground truth actions.
By computing the IoU between GT actions with aforementioned N proposals,
the IoU map is obtained as shown in Fig. 1 left. In this map, point(i, j) represents
the maximum IoU between GTs with proposal(i, j) (following the definition in
BMN, proposal(i, j) indicates a proposal with duration time i and start time
j). Therefore IoU values around GT are closer to 1 and should be considered as
high quality proposals. However, as visualized in Fig. 1, the area of high quality
proposals of long action ϕ2 is much larger than short action ϕ1, which reminds
us: Is the short action overlooked in such dense regression mechanism?

The answer is Yes. No matter what loss function we choose in IoU regression,
for example binary logistic loss used in BMN and L2 loss in DBG, positive
samples and negative samples need to be defined first. Normally, a proposal with
its IoU > ε is regarded as positive, where ε is a predefined threshold. Thus, we
can use sampling or reweight methods to balance the positive/negative samples.
However, inside the positive samples, with the change of action scale s, the
number of positive samples npos of each ground truth would vary significantly,
as shown in Fig. 2. Take Fig. 2(a) for instance, when D = 100, an action with
scale 0.85 has 10x positive samples than the action with scale 0.25. Consequently,
the short action with less positive samples can not be learned adequately.

To address above problem, the loss function of confidence regression must
satisfy two conditions (1) the contribution of each ground truth should be equal
considering the npos (2) the positive/negative samples should be balanced appro-
priately. To this end, we propose the scale-invariant loss (SI-Loss) as Eq. 1.

LSI =
∑

i,j
bi,jwi,j log (pi,j) + (1 − bi,j) wi,j log (1 − pi,j) (1)

wi,j =

{
(1 − α)/npos,c if bi,j = 1
α/(N − ∑

c npos,c) if bi,j = 0
(2)
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Fig. 3. The framework of our method. TSI contains two modules: temporal bound-
ary detector (TBD) and IoU map regressor (IMR). In TBD, local branch focuses on
local information and generates high-recall-assured boundaries, while U-shaped global
branch distills contextual features and provides high precision-assured boundaries.
Meanwhile, IMR densely regresses the completeness of potential proposals supervised
with scale-invariant loss, which can greatly improve the detection ability for short
actions.

SI-Loss essentially is a scale-weighted binary logistic loss. In Eq. 1, wi,j is
the weight coefficient for proposal(i, j). bi,j stands for the positive mask whether
proposal(i, j) is a positive sample given threshold ε. To balance the change of
npos in loss contribution, we define wi,j as following: if a proposal(i, j) is a
positive sample and it belongs to annotation ϕc, we divide its loss with ϕc’s total
positive sample number npos,c, which can guarantee the aggregate positive loss of
each GT the same. In this way, taking positive sample number distribution into
consideration, each action in a video can be learned equally in the training loss,
which achieves the scale-invariant purpose. What’s more, to control the balance
of positive and negative samples, hyper-parameter α is adopted in SI-Loss.

When video only contains one annotation and α takes 0.5, scale-invariant
loss would degenerate into normal binary logistic loss. What’s more, when α
is bigger than 0.5, SI-Loss would have a higher weight on negative samples,
which can reduce the false positive response. Supervised with SI-Loss, in proposal
completeness regression module, the ability to retrieve small targets is greatly
enhanced and its effectiveness has been proved as shown in Table 5.

3.3 Temporal Scale Invariant Network

With the scale-invariant loss, to achieve the complete action proposal generation
process, we combine the bottom-up and top-down pathways and propose Tem-
poral Scale Invariant Network. The framework of TSI can be demonstrated as
Fig. 3, which contains two modules: Temporal Boundary Detector (TBD)
and IoU Map Regressor (IMR).

Temporal Boundary Detector. It is acknowledged that one of the necessary
conditions for a well-performed action proposal generation method is the precise



536 S. Liu et al.

Conv1d(3,128)

MaxPool, /2

Conv1d(3,256)

MaxPool, /2

Conv1d(3,512)

UpSample, x2

Conv1d(3,256)

UpSample, x2

Conv1d(3,128)

Conv1d(3,128)

c

c

Global Branch  High precision, low recall

Conv1d(1,2)

Conv1d(1,2)

Local Branch  High recall, low precision

Concatena onc

Sigmoid

Sigmoid

Input

UpSample, x2

c

GT start GT start

Fig. 4. TBD architecture. TBD contains local branch and global branch to detect
boundaries with high precision and high recall. c stands for the concatenation operation.

prediction for action boundary. Conventional approaches [7,9] hold that bound-
ary is a local information which does not require much attention on temporal
context or deep semantic features, thus they both share a limited receptive field.

Such viewpoints, however, are biased as revealed in [6,8]. Actions with differ-
ent scales should require corresponding receptive field, thus the boundary detec-
tion module need to be able to leverage local apparent information and global
contextual semantic information in a unified framework. Taking into account of
such requirements, we design a local-global complementary network named TBD
to detect accurate temporal boundaries, as shown in Fig. 4.

In TBD, the local branch observes a small receptive field with only two
temporal convolution layers. Therefore this branch focuses on the local abrupt
change and generates a rough boundary with high recall to cover all actual
start/end points, yet bringing extreme low precision. To make up this short-
coming, global branch enlarges the receptive field and presents boundaries with
contextual U-shaped network, which is inspired by UNet [27]. The global branch
uses multiple temporal convolution layers followed by down-sampling steps to
distill semantic information of different granularity. To restore the resolution
of temporal feature sequence, several up-sampling operations are repeated and
features in the same resolutions are concatenated.

In Fig. 4, conv1d(3,128) represents the temporal convolution layer with
kernel size 3 and output channel 128. If not stated specifically, ReLU is used
for activation function. At last, 1× 1 convolution with 2 channels and sigmoid
function is used to generate starting and ending boundaries for both branches.
To sum up, this combination of local and global structure will best leverage
the low-level fine-grained features with contextual features and extract accurate
boundaries with high recall and high precision.

IoU Map Regressor. Besides the bottom-up pathway of boundary evalu-
ation, proposal confidence regression is also vital for action proposal genera-
tion. To densely regress potential proposal confidence, we adopt the Boundary-
Matching mechanism in BMN [9], which can transfer temporal feature sequence
F ∈ R

C×D to proposal feature matrix MF ∈ R
C×M×D×D through BM layer.
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Boundary-Matching mechanism essentially is a ROI align layer implemented in
matrix product. By using such module, the completeness of all proposals can be
regressed simultaneously.

For fair comparison, we follow the exact network structure of proposal evalu-
ation module in BMN. After IoU Map Regressor, each proposal will be predicted
with two confidence score, which is supervised with IoU classification loss and
IoU regression loss. However, the classification loss in BMN ignores the impact
of action scales that leads to the low recall of short actions. Therefore, we use
the aforementioned scale-invariant loss as the IoU classification loss to enforce
the network to focus on different scale actions equally.

4 Training and Inference

4.1 Training of TSI

Label Assignment. For a ground truth action ϕg = [ts, te], action starting
region is defined as rs = [ts − d/10,ts + d/10] , where d = te − ts. Then by
computing the maximum overlap ratio of each temporal interval with rs, we can
obtain Gs = {gsi } as the starting label of TBD. The same label assignment
process is adopted for ending label Ge. As for IMR, the label of IoU map is
denoted as Giou = {gi,j}, which follows the definition in BMN.

Loss of TBD. The output of TBD are the starting and ending probability
sequence from local and global branch, denoted as Ps,l, Pe,l, Ps,g, and Pe,g respec-
tively. We follow [7] to adopt binary logistic loss Lbl to supervise the boundary
prediction with Gs, Ge, denoted as

LTBD =
1
2

(Lbl (Ps,l, Gs) + Lbl (Pe,l, Ge) + Lbl (Ps,g, Gs) + Lbl (Pe,g, Ge)) (3)

Loss of IMR. The output of IMR is a probability map Piou with two channels.
Following BMN, we construct the classification loss and regression loss as the
IMR loss, where we use proposed SI-Loss as classification loss LC and L2 loss
as regression loss LR. Especially, positive threshold ε is set as 0.9 in SI-Loss.

LIMR = LC(Piou,c, Giou) + LR(Piou,r, Giou) (4)

The training objective of TSI is the multi-task learning in the unified framework.
The overall loss function contains TBD loss, IMR loss, and L2 regularization
term, where λ is the weight term set to 10−4:

L = LTBD + LIMR + λ · L2 (Θ) (5)
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4.2 Inference of TSI

Proposal Selection. To ensure the diversity of proposals and guarantee a high
recall, only local branch of TBD is used for proposal selection. Following [7,9],
all temporal locations satisfying (1) local peak in boundary probabilities and (2)
probabilities higher than 0.5 · max(P ) are regarded as the starting and ending
locations. Then we match all starting and ending locations to generate redundant
candidate proposals, denoted as Ψp.

Score Fusion and Proposal Suppression. For each proposal(i, j) in Ψp,
whose duration time is i, start time is j and end time is i+j, its IoU completeness
is denoted as fusion of classification score and regression score piou = pi,j,c · pi,j,r.
Its starting probability is denoted as pstart =

√
ps,l(i) · ps,g(i), which is the same

as pend for ending probability. Therefore the proposal confidence score is defined
as pf = pstart · pend · piou. Then we adopt Soft-NMS [28] to remove redundant
proposals to retrieve final high quality proposals.

5 Experiments

5.1 Datasets and Settings

ActivityNet-1.3 [29] is a large-scale video understanding dataset, consisting
of 19,994 videos annotated for action proposal task. The dataset is divided into
training, validation and testing set with the ratio of 2:1:1.

THUMOS14 dataset contains 200 annotated untrimmed videos in validation
set and 213 annotated untrimmed videos in testing set. We use the validation
set to train TSI and evaluate our model on testing set.

Implementation Details. On ActivityNet dataset, rescaling length D is set to
100. On THUMOS dataset, we slide the temporal window with length 128 and
overlap ratio 0.5 by following [7]. On both datasets, we use batch size of 16 and
Adam optimizer to train TSI. The learning rate is set to 10−3 and decay it to
10−4 after 7 epochs. Besides, α is set to 0.8 as experimented on ablation study.

5.2 Temporal Action Proposal Generation

For action proposal generation task, Average Recall (AR) under Average Num-
ber of proposals (AN) with different IoU thresholds is the widely used evaluation
metrics. Besides, the area under AR vs AN curve (AUC) is also used for com-
parison on ActivityNet-1.3 in our experiments.

Comparison with State-of-the-Art Methods. Table 1 illustrates the per-
formance of our proposal generation method compared with other state-of-the-
art methods on ActivityNet-1.3 dataset. The result shows that TSI outperform
other methods and improves the AUC from 67.10% to 68.35% on validation set.
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Table 1. Comparison between TSI and other state-of-the-art temporal action proposal
generation methods on ActivityNet-1.3 in terms of AR@100 and AUC.

Method CTAP [5] BSN [7] MGG [25] BMN [9] DBG [10] TSI

AR@100(val) 73.17 74.16 74.56 75.01 76.65 76.31

AUC(val) 65.72 66.17 66.54 67.10 68.23 68.35

AUC(test) – 66.26 66.47 67.19 68.57 68.85

Table 2. Comparison between TSI and other state-of-the-art temporal action proposal
generation methods on test set of THUMOS14 dataset in terms of AR@AN.

Method Feature @50 @100 @200 @500 Feature @50 @100 @200 @500

TURN [22] C3D 19.63 27.96 38.34 53.52 Flow 21.86 31.89 43.02 57.63

MGG [25] C3D 29.11 36.31 44.32 54.95 2Stream 39.93 47.75 54.65 61.36

BSN [7] C3D 29.58 37.38 45.55 54.67 2Stream 37.46 46.06 53.21 60.64

BMN [9] C3D 32.73 40.68 47.86 56.42 2Stream 39.36 47.72 54.70 62.07

DBG [10] C3D 32.55 41.07 48.83 57.58 2Stream 40.89 49.24 55.76 62.21

TSI C3D 33.46 41.64 49.97 57.73 2Stream 42.30 50.51 57.24 63.43

Fig. 5. Comparison between TSI and other state-of-the-art methods on test set of
THUMOS14 in terms of (left) AR@AN (right) Recall@100 with different tIoU.

Especially, the AR@100 is improved from 75.01% to 76.31%, suggesting TSI can
generate rich and accurate proposals.

We also implement our method on THUMOS14, as shown in Table 2. C3D
feature [15] and two stream feature [14] used in BMN are adopted for fair com-
parison. Experiment shows that TSI outperforms other methods in all AN sets
and achieves state-of-the-art performance. Figure 5 further illustrates that TSI
can guarantee higher recall with fewer proposals and in terms of different tIoU.

Ablation Study. To fully confirm the effectiveness of TSI, we conduct extensive
ablation experiments on our proposed method.
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Table 3. Ablation study of different boundary detection modules on ActivityNet-1.3.

BSN-TEM BMN-TEM TSI-TBD

AUC(val) 64.80 65.17 66.31

AR@100 73.57 73.72 74.13

Table 4. Ablation study of hyper parameter α in Scale-Invariant loss.

α 0.5 0.6 0.7 0.8 0.9

AUC(val) 67.98 68.08 68.13 68.35 68.33

Table 5. Ablation study of Scale-Invariant Loss with AUC performance of different
action scales on ActivityNet-1.3 validation set. s stands for the scale of ground truth

Method AUC 0.0 ≤ s < 0.06 0.06 ≤ s < 0.65 0.65 ≤ s ≤ 1.0

BMN 67.10 36.53 70.43 94.48

BMN+SI-Loss 67.98 40.24 70.32 94.41

DBG 67.90 39.07 72.18 93.08

DBG+SI-Loss 68.23 40.57 70.25 94.73

TSI(TBD) 66.31 36.65 68.55 94.59

TSI(TBD+IMR) 67.47 36.87 71.11 95.20

TSI(TBD+IMR+SI-loss) 68.35 39.63 71.40 94.79

Effectiveness of Temporal Boundary Detector. First, we evaluate our
temporal boundary detector with other boundary-based methods. As shown in
Table 3, we only use TBD without IMR to generate action proposals, which can
already achieve higher AUC and recall of 66.31%, compared with other tem-
poral evaluation module in BSN and BMN. This result proves that TBD with
local-global branches can better leverage the temporal context to detect pre-
cise boundaries and well balance the recall and precision of retrieved boundary
location. Note that in all comparisons, Soft-NMS is used for redundant proposal
suppression.

Ablation Study of α In Scale-Invariant Loss. The hyper parameter α is
the coefficient to balance the positive/negative samples. As shown in Table 4,
with the increase of α, AUC is correspondingly boosted from 67.98% to 68.35%,
indicating (1) network supervised with scale-invariant loss can achieve high AUC
regardless of α (2) the larger α would reduce the false positive response of IoU
prediction, which can improve the detection ability.

Effectiveness of Scale-Invariant Loss. To further verify the effectiveness pro-
posed scale-invariant loss function, we conducted several ablation experiments,
which is shown in Table 5. (Note: we use the same video feature of BMN on DBG
and TSI, thus the result of DBG is lower than reported in their paper.)
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Table 6. Generalization ability of TSI on validation set of ActivityNet-1.3 in terms
of AR@100 and AUC.

BMN/TSI Seen Unseen

AR@100 AUC AR@100 AUC

Training with Seen+Unseen 72.96/74.69 65.02/66.54 72.68/74.31 65.06/66.14

Training with Seen 72.47/73.59 64.37/65.60 72.46/73.07 64.47/65.05

First, to verify the detection ability on short actions, we compare the AUC
performance on different scales of actions on ActivityNet-1.3 validation set.
According to the value of s from small to large, we artificially divide the dataset
into three groups: small scale actions that 0 ≤ s < 0.06, middle scale actions
that 0.06 ≤ s < 0.65, and large scale actions 0.65 ≤ s ≤ 1.0. Each subset
has almost the same amount of ground truth, which guarantees the fairness of
comparison. Then we evaluate methods on each sub dataset.

What’s more, we transfer our scale-invariant loss to our methods to prove its
generality. The results demonstrate:

1. Both BMN, DBG and TSI behave worse on the subset of short actions com-
pared with long actions. This phenomenon is intuitive because small actions
naturally don’t have sufficient feature representation against the background,
and the IoU evaluation metrics are sensitive especially on small action length,
not surprisingly, bringing the extreme low recall.

2. Without bells and whistles, we transfer the scale-invariant loss into BMN
and DBG, and achieve steady improvements. In BMN, AUC of short actions
has been boosted from 36.53% to 40.24%. Specifically, because the imbalance
issue in DBG is not severer as BMN, AUC gains for DBG is not as much as
BMN, which is acceptable.

3. Except for the significant improvement on short actions, to middle actions
and long actions, TSI also provide performance gains than baseline BMN.

4. If we only adopt boundary detection module in TSI, AUC can achieve 66.31%.
When we integrate TBD with IMR, performance is already better than the
BMN baseline. Overall, our TSI achieves the 68.35% in validation set and
68.85% on test set of ActivityNet-1.3.

Generalization Ability. To evaluate the generalization ability of action pro-
posal methods for unseen videos, following [9], we choose two un-overlapped sub-
sets “Sports, Exercise, and Recreation” and “Socialing, Relaxing, and Leisure”
classes of ActivityNet-1.3, as seen and unseen subset respectively. C3D [15] pre-
trained on Sports-1M dataset [30] is adopted for feature extraction. We train TSI
with seen and seen+unseen videos separately and evaluate on both sub-datasets.
As shown in Table 6, TSI can localize the actions of unseen data with high AUC.
Compared with BMN, TSI also achieves better generalization ability.
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Fig. 6. Qualitative results of top-5 proposals generated by BMN and TSI on
ActivityNet-1.3.

Visualization of Qualitative Results. As illustrated in Fig. 6, we visualize
the top-5 proposal prediction of BMN and TSI on ActivityNet dataset. The
demonstrated surfing video has three ground truth actions. However, due to the
excessive learning for long actions, BMN may regard two individual actions as
only one and predict more proposals with long duration. Besides, the temporal
boundary of BMN is also not accurate enough. Compared with BMN, our pro-
posed method can retrieve three actions independently with higher overlap and
more accurate boundaries, because of the introduced modules.

5.3 Temporal Action Proposal Detection

With retrieved high quality action proposals, many video understanding tasks
will be benefited, such as temporal action detection. In the detection task, Mean
Average Precision (mAP) is used as the evaluation metrics. For a fair comparison,
we combine our TSI proposals with state-of-the-art action classifier to achieve
“detection by classifying proposals” framework.

On THUMOS14, we select top-200 TSI proposals with UntrimmedNet classi-
fier [17] following [9]. The results on THUMOS14 datasets are shown in Table 7.
Experiments prove that our generated proposals can satisfy the demand for
detection task and outperform other state-of-the-art methods on THUMOS14
benchmarks, indicating that TSI can retrieve high quality action proposals.

On ActivityNet-1.3, we adopt top-100 TSI proposals with top-2 video level
classification results provided by CUHK [31] as detection results. More specific,
to enhance the detection performance on ActivityNet, we first adopt the proposal
selection introduced in Sect. 4.2. Then, instead of using pstart · pend · piou as
proposal confidence, we directly use the piou as final proposal confidence and
utilize NMS with threshold 0.5 to reduce the redundant proposals, which is the
same setting in BMN for fair comparison. The results are reported in Table 8.



Temporal Scale Invariant Network 543

Table 7. Action detection results on testing set of THUMOS14, where video-level
classifier UntrimmedNet [17] is combined with our proposals.

Method 0.7 0.6 0.5 0.4 0.3

TURN [22] 6.3 14.1 25.6 35.3 46.3

BSN [7] 20.0 28.4 36.9 45.0 53.5

MGG [25] 21.3 29.5 37.4 46.8 53.9

BMN [9] 20.5 29.7 38.8 47.4 56.0

DBG [10] 21.7 30.2 39.8 49.4 57.8

G-TAD [13] 23.4 30.8 40.2 47.6 54.5

TSI 22.4 33.2 42.6 52.1 61.0

Table 8. Action detection results on validation set of ActivityNet-1.3, where video-
level classification results generated by [31] are combined with our proposals.

Method Validation

0.5 0.75 0.95 Average

SSN [2] 39.12 23.48 5.49 23.98

BSN [7] 46.45 29.96 8.02 30.03

DBG [10] 42.59 26.24 6.56 29.72

BMN [9] 50.07 34.78 8.29 33.85

G-TAD [13] 50.36 34.60 9.02 34.09

TSI 50.86 33.89 7.28 33.71

TSI(reweight) 51.18 35.02 6.59 34.15

To further improve the detection performance, we reweight the iou classification
score and iou regression score, which can achieve the mAP of 34.15%.

It is worth discussing the differences and connections between temporal
action proposal generation task and temporal action detection task. Although
the proposal generation results with proposal classification results can be com-
bined for the detection task, however, the proposal confidence used for ranking
must be carefully designed. For example, DBG has achieved state-of-the-art
action proposal generation performance with AUC of 68.23%, while the detec-
tion performance is unexpected low with only 29.72% mAP, which is far below
current baseline methods. The reason of this phenomenon is the different evalua-
tion metrics of each task. The action proposal generation focuses on the diversity
of retrieved proposals and judges the performance by the recall of top N propos-
als. However, the action detection task focuses on the precision of top proposals,
such as top-5. Therefore, some action proposal generation method, such as DBG,
may retrieve the actions with well diversity, yet sacrificing the precision of top
1 proposal. In fact, the top-1 precision of DBG is much lower than TSI, leading
to the low detection performance. This insight also reminds us that one possible
trick for improving detection performance, which is, using two-stage methods to
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learn the proposal confidence again with proposal generation results, and re-rank
proposals with proposal-relation-aware model, such as P-GCN.

6 Conclusion

In this paper, we introduced the Temporal Scale Invariant Network (TSI) for
action proposal generation, which can predict precise action boundaries with
temporal contextual information and regress accurate proposal confidence. Espe-
cially, we analyze the positive sample imbalance problem in temporal action
proposal generation and correspondingly devise a scale-invariant loss function to
make up the insufficient learning of short actions and reduce the impact of the
action scale change. Extensive experiments prove the effectiveness of proposed
TSI and the state-of-the-art performance on ActivityNet-1.3 and THUMOS14
benchmarks is reported.
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